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Augmented Intelligence Research Workflow for material
modeling

/ 3. Transfer data into inputs/parameters ™=y 4. Evaluate/analyze data
2. Create cloud-based \

database /
1. Gather

5. Re-train models/ simulators

Experimental —
data Sun Group
+ \
I SR Digital representation 6. Simulate key features
;A.I (e.g. self-healing, clay swelling, damage,
plasticity, leakages,

9. Make adjustment for
experimental tests

Thermal-induced brine transports)

ey 8. Generate decisions for 7. Verify and Validate

new experiments == simulations

How fast can this workflow be?

How much improvement for each iteration? And at what cost?

How to deal with different data?

Which part of the workflow can be automated, which part cannot?
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Highlight 1: Physics-informed interpretable material modeling
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The state-of-the-art material models

Von Mises J2 plasticity
1910s

Drucker-Prager

1950s

Critical state soil mechanics
1960s

Sand model with fabric
tensor 2004

When there are lots of new

materials/microstructures/meta-mateirals discovered, how

Dependence on
mean effective
pressure

Dependence
on void ratio

Dependence on
fabric tensor

can the supply of model matches the demands?
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What are the alternatives?

Classical “recurrent” black-box architectures Our approach:

Strain history Current strain / Previous
v timestep stress

Lode’s coordinates

strain tensor and plastic strain

Strain histor —_—
. € p, 9' Ep

v A 4 —
GRU Layer l CONV1D Layer
m | CONV1D Layer Higher-
Flatten Flatten / Pooling Sobolev
. - training -
order

v v functions.

GRU Recurrent NN Multi-step Feed- CONV1D Recurrent NN « Two neural networks — hyperelastic
he forward NN energy functional and yield function.
N + Elastic and plastic behaviors

decomposed.

+ Utilize plasticity theory to combine the
two networks (return mapping
algorithm) 5




Results for unseen cyclic loading data
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A classical machine
learning approach to
predict path-dependent
elastoplasticity behaviors
uses recurrent
architectures that are
usually black-box and fail to
predict unseen unloading
paths

We leverage  classical
plasticity theory to make
interpretable predictions
even on unseen loading
paths.




Machine learning with sub-goals -- Identification of initial
yield surface using elasticity model

Initial yield point

/ 0

£,=0.0

—e— elastic
| —— plastic

0.082 0.083 0.084 0.085 0.086 0.087

&€11 —— NN
RVE 5|.mulat|ons or Identify initial yield Sobolev training for yield
experiments surface and hardening function

(w FFT solver)



Converting yield surface into a signed distance function

Signed distance
function

Preprocess data as a level set initialization problem

1. Reduce dimensionality with mt-plane:
x(011, 022, 033, 012, 023, 013) = X(071,02,03) = %(p, 0).

2. Convert yield function into signed distance
function by solving Eikonal equation in polar
coordinates while enforcing the boundary f=0

E %)2:1_

Yield surface

N p——c

ap’ " p2tod

3. The resultant yield surface becomes

0  on fr(yielding) ,

d(X) outside fr(inadmissible stress)
¢k 1) =
—d(X) inside fr (elastic region)

where

4(%) = min ([ — %)



Benchmark Study: Predicting hardening/softening mechanism for pressure-dependent

materials via ONE unified level set model

» Algorithm is readily generalizable for pressure dependent models
» Data-driven formulation any capture any form of hardening (isotropic,

kinematic — change of size / shape / translation / rotation of yield
surface in 3D stress space)

Isotropic hardening Kinematic hardening

Rotational hardening Frictional

hardening



Extension 1: pressure-dependent models

* Return mapping
algorithm currently
generalizable for
isotropic pressure-
dependent models
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Capture complex hardening mechanisms

level set isocontour prediction
—— yield surface prediction / ¢ ~1(0)

. The yield function function neural network can capture a complex yield surface
evolution and predict the entire level set for an internal variable value (accumulated
prastc sraiT e, ).




ML-predicted dissipation and plastic flow direction
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Elastoplasticity NN Framework — Polycrystal Plasticity Benchmark

polycrystal
microstructure
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Highlight 2: Geometric learning for mechanics
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Graphs as microstructural representations

Euler’s 1736 Konigsberg Bridge problem Wikipedia citation network Predictions on social network

i

.

\;;—,7
NN

8
‘/‘/ 0\

Microstructures
Fake news detection Chemistry



Future Work: Geometric learning for evolving connectivity graphs

» Stress evolutions under various loadings (grain scale)

Iso-compress Pure shear Simple shear

Creating low-dimensional
representation graph to
represent microstructures
from voxel images

Unsupervised
classification of
graphs - graph

convolutions

r 4 |
energy
graph F~ II

\—Y—)

Regression of
energy
functional Y

strain

Vlassis, Ma & Sun, CMAME 2020

(For convolutional neural network on voxel images, see
Frankel et al, CMS 2019)

C. Liu", W.C. Sun, ILS-MPM: an unbiased implicit level-set-based material point method for frictional particulate contact mechanics of deformable
particles, Computer Methods in Applied Mechanics and Engineering, , d0i:10.1016/j.cma.2020.113168, 2020.



https://doi.org/10.1016/j.cma.2020.113168

Step 1B: Undirected weighted graphs as low-dimensional

representation of microstructures

—
4
Polycrystal formation
(often high-dimensional
voxel images) (n-tuple)
In the above example: 10000 01000
02000 0100
v:{01102r031v4r05} D=100300 A= 011
00020 0;
S .
E = {e12, €23, €34, €35, €45} 00002 o
Vertex and edge sets Deg ree. (f)f adjacency
connectivity) matrix

Vlassis, Ma & Sun, under review
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Graph Laplacian
L=D-A

= Every crystal is a node
- /

Undirected weigted (connectivity) graph

Lsym —

= Two crystals that are in
contact are connected
by an edge

= Every node has weights —
features

[volume, orientation, number of

neighbors, number of edges,

number of surfaces, etc.]
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Symmetric normalized  Feature matrix
graph Laplacian (e.g. Euler angle,
LsYm — D—3LD~: size of grain,

..etc)



Input graph signals > Feature extraction > Classification >

e.g. bags of words Convolutional layers

Graph signal filtering \é.. >l
1. Convolution o (S
2. Non-linear activation \M\.
o

0= <A< Ay,

Fully connected layers

._’

geometric learning encoder
(unsupervised classification of polycrystal formations)
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2
I ]
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O”‘p“‘jg'f-’,;‘,?e'ﬁ (regression of energy functional )
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Graph coarsening
3. Sub-sampling
4. Pooling
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Figure taken from Defferrard, Bresson, Pierre Vandergheynst (NIPS 2016).

Vlassis, Ma & Sun, CMAME, 2020

Figure from Luzhnica, Bay, Lio (ICLR 2019). 18



Isotropic Elasticity L, norm - H; norm Training Comparison
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Vlassis, Ma & Sun, under review



Predictions of polycrystal elasticity for calibrated and unseen RVEs

Predictions of elastic responses on unseen RVEs
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Ongoing work: Equivariant Geometric Learning/Graph Convolutional
Neural Network for mechanics problems

(A (®) ©

) ) ) seed CNN GNN Equivariant GNN Improvement
1. Data compression with non-Eucidean space

1 0.081 0.048 0.039 17.6%

2. Use Equivariant neural network to enforce 2 0.091 0.049 0.044 9-9(%;
material frame indifference (i.e. predictions 3 0129 0.050 0.043 14-60/0
not depend on observers) 4 0127 0051 0.042 18.3%
5 0.151 0.047 0.039 17.4%
mean 0.116 0.049 0.041 15.6%

In collaboration with Yusu Wang UCSD supported by NSF IDEA LABS



Future/Ongoing Work: Causal Discovery for Traction Separation Law
(Collaboration with Yanxun Xu group from Johns Hopkins)
. Background: Traction-Separation Law generated by reinforcement learning
. Challenge: Deterministic predictions are insufficient for cases with aleatoric and epistemic uncertainties
. Objective: To develop the new algorithm for efficient predictions that propagate uncertainties

. Method: Utilizing the Causal Discovery, Ensemble learning and Uncertainty Quantification to improve the predicted
mechanics laws

Graph generated by causal
discovery algorithm

\ 4

fitting
Procedures: Edge in graphs lead to supervised e ’
learning that employs dropout GRU

N i
Q‘, ﬁ
output layer
: input layer
network as well as Ensemble g hidden layer

) Uncertainty predictions by MCMC | €
Sun et al. under review

at Granular Matter




Highlight 3: Validation through competitions: non-cooperative
game for experiment design

Why People Cherry-Pick Use Third-Party Validation To
Sci Data - It’s H i b . .y o7
With Coronavirus 0 Science Build Credibility

Only 36% @ f:::’:iﬂrgentyCoun:i[ =
of studies | § -

RESEARCH ARTH

" replicated!!|
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Deep reinforcement learning for decision-making during

modeling

Alpha Go Zero

Legal game positions:
2e170

> atoms in universe
1.6e79

https://deepmind.com/bl
og/alphago-zero-learning-
scratch/

Meta modeling
DRL

Legal game positions
depend on the number
of nodes of internal
features

In our example:
over 2e4
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- e
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T
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2.0 .
15
i;_l.n
0.5

-+~ Experimental Data
= Prediction from model
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Up [mm]

o oo -0
le'a W
® -

State
(the traction-separation
model generated via
the decision tree)

Agent i anp
(the reinforcement  sewsse JOR
algorithm) guaoe
Al

o

Human

Reward
(Score of the model based on
accuracy, speed, consistent
and robustness)

Environment "
(the validation procedure
‘with constraints )

(X
caw
o,

(2 4 Up)(ne)
_ﬂu\“

Action
(modeling choices, e.g.
selection of state variables,
mathematical expressian vs.
neural network, types of neural
network for each edge_ete)

Environment Idealized multigraph for constitutive models validated against unseen data
Agent Human or Al

State s The generated constitutive laws

Action a The decisions that lead to the generation of constitutive laws

Reward r Score (objective function) of the constitutive model

v(s) Expected model score of state s

Q-value (s, a) | Expected model score from taking action a at state s

(s, a) Probability of taking action a at state s

Modeling game with classical descriptors in Euclidean space and Lie group (porosity, fabric tensor, coordination number, 3-cycle...etc, cf.
Wang & Sun, CMAME, 2019; Wang, Sun, Du, CM, 2019) -- What about non-Euclidean data (graph, manifold?)



Training Example 1: Training traction-separation law from

Reinforcement

DEM simulations

Learning Training 0 25 = T
Episodes 50 :
B = b= 0t e G —— @
Automated On & th— B i ;: - P O — ¢y 7S ; / S\ ot
P = — - - i p b . N e iR =
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ion- 2 Ar . 4 v
traction- B F > Y
separation laws -
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4 4 i 3

3 3 3
ML .Predlctlons 5 5 F g
against =2 =2 2 z2
calibrated data S 5 z =
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Figure 6: Improved calibration and blind prediction scores throughout the training. As time progresses, the Al
learn to write models with increasingly precise predictions. After 75 episodes (i.e. 75 different constitutive laws
are built, both the calibration exercises and blind predictions (blue) are able to yield excellent matches with the
benchmark (red).

Wang & Sun, CMAME, 2019, Wang, Sun & Du, CM 2019



Here, our goal is to use DRL to design experiments to validate and

attack of a model simultaneously ...

Reward

State

Two-player non-
cooperative game

Experimentalist

Experimentalist

] |
e 1130 111111111
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Wang, Sun & Du, under review

Reward

Possible applications represented by a
polytree; an experiment becomes a walk.
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Conventionally, we rely on intuition and experiments to design
experiments. Here, DRL is attempting to estimate the relative

values of the tests to suggest experiments




Training of two-player adversarial reinforcement learning for optimal
strategies to calibrate and falsify a constitutive law.

Protagonist Experimentalist Agent
Initial state s
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Wang, Sun & Du, under review

Agent 1 is tasked with generating new
experiential data to calibrate a model.

Agent 2 try to undermine the calibration effort of
Agent 1 by finding the tests that maximize the
calibration errors

Self-play reinforcement learning for two
competing agents.

In each “play”, reward is assessed, then the
reward for each action is estimated.

If we know the true “reward” of each action, we
can determine the optimal action sequence that
yields the best model.

Neural network is used to estimate the value of
each policy without hand-crafted evaluation
functions (the same for AlphaGo Zero)



Training with parallel adversarial attack

DRL update Q values for each policy
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(a) Iteration 0, Episode 10,
Defense Game Score: 0.262

(b) Iteration 3, Episode 0,
Defense Game Score: 0.811

(c) Iteration 6, Episode 40,
Defense Game Score: 0.699

(d) Iteration 10, Episode 0,
Defense Game Score: 0.886 Game

Episode 1

* Play protagonist
Episodes

T O

S

(a) Iteration 0, Episode 10,
Attack Game Score: -0.151

(b) Iteration 3, Episode 0,
Attack Game Score: -0.725

(c) Iteration 6, Episode 40,
Attack Game Score: -0.570
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Calibrated by protagonist

Falsified by adversary

(d) Iteration 10, Episode 0,
Attack Game Score: -0.989

l Run “Experiments”

Calibrate
constitutive model
with calibration
dataset 1
Evaluate Rewards of
Protagonist Game and
Adversary Game
Evaluate
constitutive model
with attack
dataset 1

DRL policy/value neural networks for
protagonist agent and adversary agent

Episode 2 Episode 3

* Play protagonist Play protagonist
game game

* Play adversary Play adversary
game game

Collect calibration datasets and
attack datasets in all game episodes
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Game Play for the non-cooperative game
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Reinforcement learning performance of the experimentalist/adversary game (Drucker-
Prager)

Training Iteration: 0 Training Iteration: 3
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Initially, both agents are exploring the parametric space and attempt to improve their

estimated Q values through interacting with each others.
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Reinforcement learning performance of the experimentalist/adversary game (Bounding

surface plasticity model)
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(e) Iteration 0, Episode 24,

(f) Iteration 3, Episode 33,
Attack Game Score: (.206

(g) Iteration 6, Episode 10,
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Reinforcement learning performance of the experimentalist/adversary game
(ML Traction- separation model)
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Evolution of the estimated policy value
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Fig. 21. Examples of paths (experiments) in the decision trees selected by the protagonist during the DRL training iterations for the
traction—separation model.
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Fig. 22. Examples of Q-values of all possible states in the experimental decision tree estimated by the protagonist’s policy/value network
fo during the DRL training iterations for the traction-separation model.
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Concluding Remarks:

1. This work focuses on two aspects of ML plasticity
modeling, i.e. smoothness and interpretability.

2. The goalis to not to replace expert knowledge with
black-box modeling but to create interface to create
more accurate and precise model.

3. Extension is focusing on incorporate geometric learning
to analyze evolution of microstructures.

4. What makes the model interpretable is not necessary
only having the expression of equations but have the
geometrical interpretation.

5. How to formulate the learning problems has a great
impact on the quality of the predictions.
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