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Augmented Intelligence Research Workflow for material 
modeling 

1. How fast can this workflow be? 

2. How much improvement for each iteration? And at what cost?

3. How to deal with different data? 

4. Which part of the workflow can be automated, which part cannot?



Highlight 1: Physics-informed interpretable material modeling



The state-of-the-art material models

Von Mises J2 plasticity

1910s 

Drucker-Prager

1950s 

Critical state soil mechanics 

1960s 

Sand model with fabric 

tensor 2004 

Dependence on 
mean effective 
pressure

Dependence 
on void ratio

Dependence on 
fabric tensor

Figure from Rebecca Brannon 

When there are lots of new 

materials/microstructures/meta-mateirals discovered, how 

can the supply of model matches the demands?



What are the alternatives?
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Classical “recurrent”  black-box architectures Our approach:
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• Two neural networks – hyperelastic

energy functional and yield function.

• Elastic and plastic behaviors 

decomposed.

• Utilize plasticity theory to combine the 

two networks (return mapping 

algorithm) 5
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Results for unseen cyclic loading data

▪ A classical machine

learning approach to

predict path-dependent

elastoplasticity behaviors

uses recurrent

architectures that are

usually black-box and fail to

predict unseen unloading

paths

▪ We leverage classical

plasticity theory to make

interpretable predictions

even on unseen loading

paths.



Machine learning with sub-goals -- Identification of  initial 
yield surface using elasticity model 

RVE simulations or 
experiments 
(w FFT solver)

Identify initial yield 
surface and hardening 

Sobolev training for yield 
function

Initial yield point 
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Converting yield surface into a signed distance function

1. Reduce dimensionality with π-plane:

2. Convert yield function into signed distance 
function by solving Eikonal equation in polar 
coordinates while enforcing the boundary f=0 

3. The resultant yield surface becomes 

where

Preprocess data as a level set initialization problem Signed distance 
function

Yield surface



𝜎1 = 𝜎2 = 𝜎3
𝜎1 = 𝜎2 = 𝜎3

Benchmark Study: Predicting hardening/softening mechanism for pressure-dependent 
materials via ONE unified level set model

• Algorithm is readily generalizable for pressure dependent models

• Data-driven formulation any capture any form of hardening (isotropic,

kinematic – change of size / shape / translation / rotation of yield

surface in 3D stress space)

Rotational hardening Frictional 

hardening

Isotropic hardening Kinematic hardening

s1

s2

s3

s1

s2

s3



𝜎1 = 𝜎2 = 𝜎3 𝜎1 = 𝜎2 = 𝜎3 𝜎1 = 𝜎2 = 𝜎3

Extension 1: pressure-dependent models

• Return mapping 

algorithm currently 

generalizable for 

isotropic pressure-

dependent models



Capture complex hardening mechanisms

▪ The yield function function neural network can capture a complex yield surface

evolution and predict the entire level set for an internal variable value (accumulated

plastic strain 𝜖𝑝).

𝜎1
𝜎1

𝜎2𝜎2

𝜎3 𝜎3
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ML-predicted dissipation and plastic flow direction

Vlassis & Sun, CMAME 2021



Elastoplasticity NN Framework – Polycrystal Plasticity Benchmark

▪ Polycrystal yield function

discovered from data – no need for

complex yield function shape

descriptors.

▪ Neural networks can fully replace

the elastoplastic constitutive

model – replace heavy FFT

simulations at every material point.



Highlight 2: Geometric learning for mechanics



Fake news detection Chemistry

Wikipedia citation network Predictions on social networkEuler’s 1736 Königsberg Bridge problem

Microstructures

Graphs as microstructural representations 



Future Work: Geometric learning for evolving connectivity graphs

➢ Stress evolutions under various loadings (grain scale)

Iso-compress Pure shear Simple shear

C. Liu", W.C. Sun, ILS-MPM: an unbiased implicit level-set-based material point method for frictional particulate contact mechanics of deformable
particles, Computer Methods in Applied Mechanics and Engineering, , doi:10.1016/j.cma.2020.113168, 2020. 16

𝔾

𝑭

ψ

Unsupervised 
classification of 
graphs - graph 
convolutions

Regression of 
energy 

functional 𝜓

*

graph

strain

energy

Vlassis, Ma & Sun, CMAME 2020

(For convolutional neural network on voxel images, see 
Frankel et al, CMS 2019)

Creating low-dimensional 
representation graph to 
represent microstructures 
from voxel images

https://doi.org/10.1016/j.cma.2020.113168


Step 1B: Undirected weighted graphs as low-dimensional 
representation of microstructures

Polycrystal formation
(often high-dimensional 

voxel images)
Undirected weighted (connectivity) graph
(n-tuple)

▪ Every crystal is a node

▪ Two crystals that are in

contact are connected

by an edge

In the above example:

Vertex and edge sets
Symmetric normalized 

graph Laplacian
Feature matrix

(e.g. Euler angle, 
size of grain, 

..etc)

▪ Every node has weights –

features
[volume, orientation, number of 

neighbors, number of edges, 

number of surfaces, etc.]

Graph Laplacianadjacency

matrix

Degree (of 
connectivity)

Vlassis, Ma & Sun, under review



Step 2B: Unsupervised learning branch on the weighted graph

18
Figure taken from Defferrard, Bresson, Pierre Vandergheynst (NIPS 2016). 

Figure from Luzhnica, Bay, Lio (ICLR 2019).  
Vlassis, Ma & Sun, CMAME, 2020



Isotropic Elasticity 𝐿2 norm - 𝐻1 norm Training Comparison

Vlassis, Ma & Sun, under review



Predictions of polycrystal elasticity for calibrated and unseen RVEs 

Predictions of elastic responses on unseen RVEs Graph isomorphism test 

Convexity test

Vlassis, Ma & Sun, under review



Ongoing work: Equivariant Geometric Learning/Graph Convolutional 
Neural Network for mechanics problems  

In collaboration with Yusu Wang UCSD supported by NSF IDEA LABS

1. Data compression with non-Eucidean space

2. Use Equivariant neural network to enforce 
material frame indifference (i.e. predictions 
not depend on observers) 



Future/Ongoing Work: 

• Background: Traction-Separation Law generated by reinforcement learning 

• Challenge: Deterministic predictions are insufficient for cases with aleatoric and epistemic uncertainties 

• Objective:  To develop the new algorithm for efficient predictions that propagate uncertainties

• Method:  Utilizing the Causal Discovery, Ensemble learning and Uncertainty Quantification to improve the predicted 
mechanics laws 

Procedures: 

Graph generated by causal 
discovery algorithm

Uncertainty predictions by MCMC

Edge in graphs lead to supervised 
learning that employs dropout GRU 

network  as well as Ensemble

U

fitting

T

e
g:

e
g:

e
g:Sun et al. under review 

at Granular Matter



Highlight 3: Validation through competitions: non-cooperative 
game for experiment design



Deep reinforcement learning for decision-making during 

modeling 

Modeling game with classical descriptors in Euclidean space and Lie group (porosity, fabric tensor, coordination number, 3-cycle…etc, cf. 

Wang & Sun, CMAME, 2019; Wang, Sun, Du, CM, 2019)  -- What about non-Euclidean data (graph, manifold?)



Training Example 1: Training traction-separation law from 

DEM simulations

Wang & Sun, CMAME, 2019, Wang, Sun & Du, CM 2019



Here, our goal is to use DRL to design experiments to validate and 

attack of a model simultaneously … 

Two-player non-
cooperative game 

Possible applications represented by a 
polytree; an experiment becomes a walk. 

Wang, Sun & Du, under review

Conventionally, we rely on intuition and experiments to design 
experiments. Here, DRL is attempting to estimate the relative 
values of the tests to suggest experiments 



Training of two-player adversarial reinforcement learning for optimal 
strategies to calibrate and falsify a constitutive law.  

Agent 1 is tasked with generating new 

experiential data to calibrate a model. 

Agent 2 try to undermine the calibration effort of 

Agent 1 by finding the tests that maximize the 

calibration errors  

Self-play reinforcement learning for two 

competing agents.

In each “play”, reward is assessed, then the 

reward for each action is estimated. 

If we know the true “reward” of each action, we 

can determine the optimal action sequence that 

yields the best model. 

Neural network is used to estimate the value of 

each policy without hand-crafted evaluation 

functions (the same for AlphaGo Zero)

Wang, Sun & Du, under review



Training with parallel adversarial attack 

Run “Experiments”

Calibrated by protagonist 
Falsified by adversary
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Game Play for the non-cooperative game 

A non-cooperative meta-modeling game for automated third-party training, validating, and falsifying constitutive laws with 
adversarial attacks, CMAME, 2020. 
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Reinforcement learning performance of the experimentalist/adversary game (Drucker-
Prager)

Initially, both agents are exploring the parametric space and attempt to improve their 

estimated Q values through interacting with each others.
30



Reinforcement learning performance of the experimentalist/adversary game (Bounding 
surface plasticity model)
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Defense experimentalist + model calibrator Attack experimentalist



Reinforcement learning performance of the experimentalist/adversary game
(ML Traction- separation model)
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Defense experimentalist + model calibrator Attack experimentalist



Evolution of the estimated policy value



Conclusion – Future work

Concluding Remarks:

1. This work focuses on two aspects of ML plasticity 
modeling, i.e. smoothness and interpretability.

2. The goal is to not to replace expert knowledge with 
black-box modeling but to create interface to create 
more accurate and precise model. 

3. Extension is focusing on incorporate geometric learning 
to analyze evolution of microstructures.

4. What makes the model interpretable is not necessary 
only having the expression of equations but have the 
geometrical interpretation. 

5. How to formulate the learning problems has a great 
impact on the quality of the predictions. 
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Thank You! 

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

More information can be found at 
www.poromehanics.org
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http://www.poromechanics.org/

